skip to main content


Search for: All records

Creators/Authors contains: "Golvari, Pooria"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Panning, Eric M. ; Liddle, J. Alexander (Ed.)
  2. von Freymann, Georg ; Blasco, Eva ; Chanda, Debashis (Ed.)
  3. Helical structures exhibit novel optical and mechanical properties and are commonly used in different fields such as metamaterials and microfluidics. A few methods exist for fabricating helical microstructures, but none of them has the throughput or flexibility required for patterning a large surface area with tunable pitch. In this paper, we report a method for fabricating helical structures with adjustable forms over large areas based on multiphoton polymerization (MPP) using single-exposure, three dimensionally structured, self-accelerating, axially tunable light fields. The light fields are generated as a superposition of high-order Bessel modes and have a closed-form expression relating the design of the phase mask to the rotation rate of the beam. The method is used to fabricate helices with different pitches and handedness in the material SU-8. Compared to point-by-point scanning, the method reported here can be used to reduce fabrication time by two orders of magnitude, paving the way for adopting MPP in many industrial applications.

     
    more » « less
  4. null (Ed.)
    This review surveys advances in the fabrication of functional microdevices by multi-photon lithography (MPL) using the SU-8 material system. Microdevices created by MPL in SU-8 have been key to progress in the fields of micro-fluidics, micro-electromechanical systems (MEMS), micro-robotics, and photonics. The review discusses components, properties, and processing of SU-8 within the context of MPL. Emphasis is focused on advances within the last five years, but the discussion also includes relevant developments outside this period in MPL and the processing of SU-8. Novel methods for improving resolution of MPL using SU-8 and discussed, along with methods for functionalizing structures after fabrication. 
    more » « less
  5. null (Ed.)